In today’s world, new technologies are developed and adopted at astounding rates. This rate of change in technology has never been more apparent than it has been in the built environment industry over the past 10 to 15 years. In an industry that constructed over $1.16 trillion worth of buildings and infrastructure in 2007* yet had 25%-50% waste due to poor coordination**, $15.6 billion in losses due to the lack of technology interoperability*** and $4-$12 billion in losses due to contract disputes****, rapid change is underway to improve upon how these projects are designed, built and operated.
*US Census Bureau, 2008; **Tolacz and Armistead, 2007; ***NIST, 2004; ****FFC, 2007
At the core of this change is Building Information Modeling (BIM). With the promise of streamlined workflows, greater coordination, reduction in waste and higher quality products, BIM has revolutionized the way we approach contracts, design, construction, operations and supply chains of our projects.
The Building Information Modelling (BIM) process (verb), at its most simple form, is the process in which technology is utilized to efficiently create, collect and leverage design, construction and operations data (and 3D geometry) amongst AECO (Architecture, Engineering, Construction, Operations) project stakeholders.
At the center of this process is the Building Information Model (BIM) (noun). A BIM is an object-based 3D virtual representation (or model) of the building project. Rather than the disjointed 2D line drawings and hard copy supporting project documentation of the past, the BIM is an intelligent 3D model comprised of objects (walls, windows, doors, FF&E, etc.) that contain both the geometry for physical representation as well as the appropriate building data required to design, build and operate the building. With construction drawings and specifications, etc. extracted along the way, this building information model is then continually developed and leveraged (via the BIM process) by all AECO project stakeholders throughout the design, construction, handover and facility operation project phases.
For another look at BIM, see the "What is BIM? Short and Simple" article here.
As you can imagine from the above, a building information model is only as useful as the accuracy and usefulness of the data and geometry of the objects that are leveraged to create it. The process of ensuring that these BIM objects contain the appropriate building information and are accurately represented geometrically starts with the product manufacturers who are making these products available to the AECO project teams. As AECO teams design, model and build their building models with the BIM objects provided by the product manufacturers, these BIM objects begin to establish the solid foundation of building information that a project will be built upon as well as work as virtual sales agents for the product manufacturer as product make, model, specification information, etc. is already included within each object.
At NELSON, we help product manufacturers collect, analyze and migrate the appropriate information from their production and marketing environments into these small, compact yet intelligent 3D BIM objects. NELSON, at our heart, is a design firm comprised of hundreds strong BIM users that use these BIM objects every day. We are well equipped from an AECO team player as well as a technical/subject matter expert standpoint to assist in determining the appropriate levels of information to be included in a manufacturer’s BIM objects as well as the level of detail of geometry necessary to ensure maximum value.
The approach we take with product manufacturers in developing and implementing a BIM strategy is simple, yet effective in practice:
The level of detail of the geometry is also key to ensuring that a delicate balance is struck between effectiveness of the physical representation of the product and the usefulness of the objects once loaded into BIM software. Many times objects are over modeled resulting in performance issues once loaded into a building information model.
The broad holistic, 'entire-catalog' approach taken ensures that all information collected, analyzed and ultimately included in the BIM content as well as appropriate geometry requirements are consistently distributed amongst all products.
*US Census Bureau, 2008; **Tolacz and Armistead, 2007; ***NIST, 2004; ****FFC, 2007
At the core of this change is Building Information Modeling (BIM). With the promise of streamlined workflows, greater coordination, reduction in waste and higher quality products, BIM has revolutionized the way we approach contracts, design, construction, operations and supply chains of our projects.
The Building Information Modelling (BIM) process (verb), at its most simple form, is the process in which technology is utilized to efficiently create, collect and leverage design, construction and operations data (and 3D geometry) amongst AECO (Architecture, Engineering, Construction, Operations) project stakeholders.
At the center of this process is the Building Information Model (BIM) (noun). A BIM is an object-based 3D virtual representation (or model) of the building project. Rather than the disjointed 2D line drawings and hard copy supporting project documentation of the past, the BIM is an intelligent 3D model comprised of objects (walls, windows, doors, FF&E, etc.) that contain both the geometry for physical representation as well as the appropriate building data required to design, build and operate the building. With construction drawings and specifications, etc. extracted along the way, this building information model is then continually developed and leveraged (via the BIM process) by all AECO project stakeholders throughout the design, construction, handover and facility operation project phases.
For another look at BIM, see the "What is BIM? Short and Simple" article here.
As you can imagine from the above, a building information model is only as useful as the accuracy and usefulness of the data and geometry of the objects that are leveraged to create it. The process of ensuring that these BIM objects contain the appropriate building information and are accurately represented geometrically starts with the product manufacturers who are making these products available to the AECO project teams. As AECO teams design, model and build their building models with the BIM objects provided by the product manufacturers, these BIM objects begin to establish the solid foundation of building information that a project will be built upon as well as work as virtual sales agents for the product manufacturer as product make, model, specification information, etc. is already included within each object.
At NELSON, we help product manufacturers collect, analyze and migrate the appropriate information from their production and marketing environments into these small, compact yet intelligent 3D BIM objects. NELSON, at our heart, is a design firm comprised of hundreds strong BIM users that use these BIM objects every day. We are well equipped from an AECO team player as well as a technical/subject matter expert standpoint to assist in determining the appropriate levels of information to be included in a manufacturer’s BIM objects as well as the level of detail of geometry necessary to ensure maximum value.
The approach we take with product manufacturers in developing and implementing a BIM strategy is simple, yet effective in practice:
1. Content Definition
Catalog Review
Firstly, a broad all-encompassing reviw of all products within a manufacturer’s catalog is performed to determine the level of effort and resources that may be required to develop BIM objects for products across all product lines.Object Classification and Ecosystem Structure
With some organizations, the sheer quantity of products that an endeavor like would entail can be daunting. Based on the findings in the catalog review, an implementation strategy is be developed that will best take advantage of budget and time requirements while working to meet organizational goals. This strategy also outlines the most efficient way to structure object libraries as well as establish an ecosystem that is both incrementally implementable as well as scalable.Information Collection
Through various reviews and exercises, relevant information is gathered from production, pricing and marketing materials to include in the BIM objects.Parameter and Geometry Definition
Based on the findings during Information Collection, a common set of data parameters is be developed to be included in all BIM objects; parameters such as warranty information, contact information, costs, materials and configuration/size changes. In addition to product specific data, additional parameters may also be suggested based on industry trends and/or relevant design standards such as UniFormat/OmniClass classifications as well as COBie and IFMA/OSCRE/BOMA information.The level of detail of the geometry is also key to ensuring that a delicate balance is struck between effectiveness of the physical representation of the product and the usefulness of the objects once loaded into BIM software. Many times objects are over modeled resulting in performance issues once loaded into a building information model.
The broad holistic, 'entire-catalog' approach taken ensures that all information collected, analyzed and ultimately included in the BIM content as well as appropriate geometry requirements are consistently distributed amongst all products.